

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Concentration-Dependent Variation of $^1\text{H-NMR}$ Chemical Shifts of Aromatic Protons in Sampangine Derivatives

Isamu Katsuyama^a; Ashraf A. Khalil^a; Chuck Dunbar^a; Jordan K. Zjawiony^a

^a Department of Pharmacognosy, and National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi, USA

Online publication date: 16 December 2003

To cite this Article Katsuyama, Isamu , Khalil, Ashraf A. , Dunbar, Chuck and Zjawiony, Jordan K.(2003) 'Concentration-Dependent Variation of $^1\text{H-NMR}$ Chemical Shifts of Aromatic Protons in Sampangine Derivatives', *Spectroscopy Letters*, 36: 5, 477 — 485

To link to this Article: DOI: 10.1081/SL-120026613

URL: <http://dx.doi.org/10.1081/SL-120026613>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Concentration-Dependent Variation of $^1\text{H-NMR}$ Chemical Shifts of Aromatic Protons in Sampangine Derivatives

Isamu Katsuyama, Ashraf A. Khalil, Chuck Dunbar,
and Jordan K. Zjawiony*

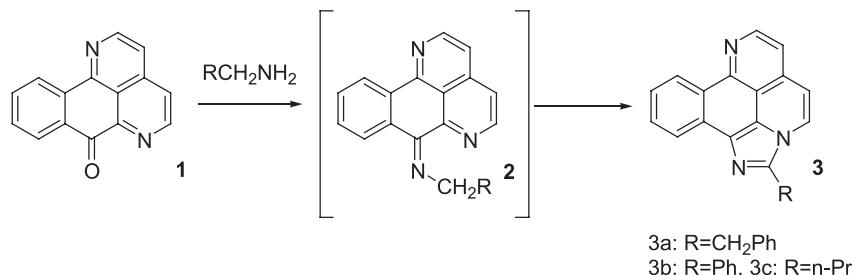
Department of Pharmacognosy, and National Center for Natural
Products Research, Research Institute of Pharmaceutical Sciences,
School of Pharmacy, The University of Mississippi,
University, Mississippi, USA

ABSTRACT

A concentration dependence of the $^1\text{H-NMR}$ chemical shifts of the aromatic protons in sampangine derivatives with a fused imidazole ring is observed. This variation is probably ascribable to self-association of the molecules through an intermolecular π -stacking interaction of the aromatic rings. The quantitative variation is correlated with the calculated electrostatic potential for these derivatives. The concentration variation

*Correspondence: J. K. Zjawiony, Department of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Fax: (662) 915-6975; E-mail: jordan@olemiss.edu.

appears to be independent of the nature of the substitution in the imidazole ring.


Key Words: NMR; ^1H ; Shift variations; Concentration dependence; Molecular modeling; Intermolecular interaction; Sampangine derivatives.

INTRODUCTION

NMR spectroscopy has been demonstrated to be a very useful tool for probing the details of molecular structure. It is widely used in many research fields, especially organic chemistry, bioorganic chemistry and biochemistry. In particular, the phenomenon of concentration dependence in NMR spectra is of considerable current interest.^[1–5] Concentration-dependent chemical shifts have been used to study molecular association.^[6,7] Such studies have been undertaken primarily for nucleobases^[8–13] and oligomers.^[14–16] Fused aromatic and heteroaromatic systems are known to possess novel properties such as functional materials^[17–19] and biologically active compounds.^[20–22]

Sampangine (**1**), a natural alkaloid with four fused conjugated rings including a 2,7-naphthyridine moiety, is reported to be active against *Candida albicans* and *Cryptococcus neoformans*^[23] and to show interesting reactivities in nucleophilic and electrophilic substitution.^[24–26] In the course of studies on the structural modification of **1**, we obtained several new derivatives of sampangine (**3a–c**), possessing a fused imidazole, instead of the anticipated Schiff base (**2**)^[27] (Scheme 1).

We have examined the proton NMR spectra of **3a–c** and found a concentration dependence of the NMR of the aromatic protons in **3a** and **3b**.^[28]

Scheme 1. Reaction of sampangine with phenethyl, benzyl, and n-butylamine.

EXPERIMENTAL

All spectra were recorded at ambient temperature in 3 mm sample tubes on a Bruker DRX-400 NMR spectrometer in CDCl₃. Deuterated chloroform (99.8% D) was obtained from Cambridge Isotope Laboratories, Inc. (Andover, MA). Chemical shifts are reported in parts per million (ppm) relative to internal standard, tetramethylsilane (TMS) at 0.0 ppm.

Computational calculations were performed with the SPARTAN V 5.0 program (Wavefunction Inc., CA) mounted on the Indigo² Workstation (Silicon Graphics, Inc. CA). The geometries of **3** were optimized at the AM1, and electrostatic potential maps were calculated using these geometries at the HF/6-31G*.

RESULTS AND DISCUSSION

We have found that the proton chemical shifts of **3a-c** are dependent on their concentration in solution. Table 1 shows the ¹H-NMR spectra of **3a-c** in CDCl₃ at various concentrations (mM).

The magnitude of the shift variation for **3a-c** decreases in the order H-4 > H-5 > H-3 > H-2 > H-8, 11 ≫ H-9, 10.

It is worth noting that the best-dispersed spectra are obtained at 60 and 90 mM; this implies that a suitable concentration exists to obtain the best spectrum, which is important for smooth assignment of signals. The magnitude of the variation increased in CD₃OD, while it decreased in DMSO-*d*₆, CD₃CN, and benzene-*d*₆ compared with in CDCl₃. These effects suggest that the magnitude of the variation in ¹H shifts is not necessarily dependent on hydrophilicity, polarity, or aromaticity of the solvents. As has already been described for aromatic systems,^[7] the chemical shift variations observed in this study do not appear to be due to the change in conformational population (with concentration) of the pendant groups in **3a-c**.^[29] In order to consider the origin of this phenomenon, we examined the electronic configuration of **3a-c** by use of molecular modeling. The electrostatic potential map for **3a** clearly indicates that the aromatic protons are positively charged and that nitrogen atoms (N-1 and N-7) are negatively charged (Figure 1).

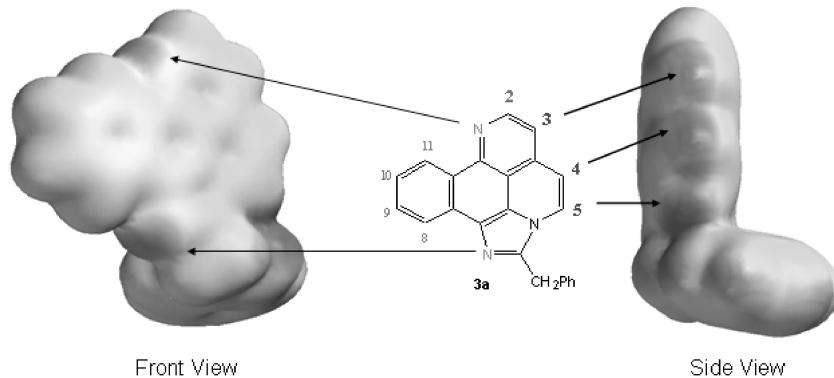

The most remarkable observation is that the magnitude of the electrostatic potential of these protons is proportional to the observed chemical shift variations. The NMR signals for H-3, -4, and -5, which exhibited greater positive charge, were observed to have a greater concentration variation than those of H-9 and-10, which are less positively

Table I. Relative changes in chemical shifts ($\Delta\delta$) of **3a**, **3b**, and **3c** with the change of sample concentration [mM] in their ^1H NMR spectra in CDCl_3 . The positive changes are downfield, shown in ppm, relative to signals measured for 120 mM.

Compound	3a					3b					3c							
	7	15	30	60	90	120	7	15	30	60	90	120	7	15	30	60	90	120
Concentration [mM]																		
H-2	0.13	0.11	0.08	0.06	0.02	8.95	0.17	0.16	0.11	0.06	0.04	8.95	0.12	0.10	0.08	0.07	0.01	8.99
H-3	0.22	0.19	0.14	0.10	0.05	7.33	0.23	0.18	0.12	0.05	7.37	0.22	0.19	0.13	0.10	0.02	7.41	
H-4	0.30	0.25	0.19	0.11	0.06	6.65	0.30	0.27	0.20	0.11	0.05	6.85	0.30	0.22	0.19	0.12	0.02	6.80
H-5	0.25	0.21	0.16	0.11	0.06	7.50	0.24	0.23	0.15	0.09	0.04	8.17	0.29	0.26	0.18	0.12	0.03	7.78
H-8	0.06	0.06	0.04	0.03	0.01	8.69	0.10	0.10	0.08	0.04	0.02	8.70	0.06	0.05	0.04	0.04	0.00	8.66
H-9	0.00	0.01	0.00	0.01	0.00	7.86	0.08	0.08	0.06	0.03	0.01	7.82	0.04	0.02	0.02	0.00	7.84	
H-10	0.00	0.00	0.00	0.00	0.00	7.73	0.06	0.06	0.04	0.02	0.01	7.70	0.04	0.02	0.02	0.00	7.71	
H-11	0.06	0.06	0.05	0.04	0.02	9.29	0.13	0.13	0.09	0.04	0.03	9.24	0.04	0.03	0.02	0.02	0.00	9.29

Figure 1. Electrostatic potential map for **3a**. (Go to www.dekker.com to view this figure in color.)

charged.^a These finding were also observed for **3b**^b and hence led to the assumption that the protons in one molecule interacted with the nitrogen atoms in the other one (or more). Nitrogen-15 NMR experiments at various concentrations, however, indicated an absence of such interactions because the magnitudes of the variation in ¹⁵N shifts are very small in contrast to those in ¹H shifts. These observations suggest the possibility of an aromatic interaction between A, B, E and phenyl rings in the R group, whose π -systems are neutral over a wide range. Interactions between aromatic rings have been theoretically proposed on the basis of studies of free energy profiles for the association of the benzene dimer in solution such as liquid benzene, chloroform, and water;^[30] in all cases the dimer is energetically preferred and stacked structures become increasingly favorable with increasing arene size. This seems to provide a rational explanation of our experimental results.

To further explore the possibility that substitution on the imidazole ring of sampangine was not responsible for the chemical shift variation, the *n*-propyl derivative **3c** (R = *n*-Pr)^c was prepared and studied. Investigation of the ¹H-NMR spectra was conducted on **3c** and sampangine (**1**) in CDCl₃ at various concentrations. As with **3a** and **3b**, **3c** showed similar proton chemical shifts that were extremely dependent on the concentration.

^aElectrostatic potentials (kcal/mol) for **3a** on H-3, -4, and -5 are 31.6, 35.2, and 37.7, while that on H-9 and -10 are 20.3 and 19.4, respectively.

^bElectrostatic potentials (kcal/mol) for **3b** on H-3, -4, and -5 are 31.5, 38.0, and 43.3, while that on H-9 and -10 are 20.2 and 21.0, respectively.

^cThe derivative **3c** was prepared by using the same method described in Ref. [27].

The fact that substitution on sampangine with phenyl groups ($R = Ph$, $R = CH_2Ph$) or n-propyl ($R = n-Pr$) gave similar concentration-dependent chemical shifts indicated that the phenyl group substituted on the imidazole ring was not involved in the aromatic interaction. On the other hand, the shift variation of **1** is much smaller than that of **3**. These results suggest, therefore, that the fused imidazole (E ring) plays a very important role in the sampangine derivatives in the interactions between aromatic rings, and that these interactions do not appear to be affected by substitution.

CONCLUSION

In conclusion, we have found concentration-dependent variation in chemical shifts of aromatic ring protons in the sampangine derivatives **3a-c**. This concentration-dependent variation of proton chemical shift is probably ascribable to the self-association of these molecules in solution. Such phenomenon may be observed in various fused aromatic and heteroaromatic compounds.

SUPPORTING INFORMATION AVAILABLE

Graphical presentation of chemical shift *vs.* concentration for the protons of **3a** in CD_3OD , $DMSO-d_6$, CD_3CN , benzene- d_6 , chemical shift *vs.* concentration for the protons of **1** in $CDCl_3$, and chemical shift *vs.* concentration for the nitrogen atoms of **3a** in $CDCl_3$. This material is available from the authors on request.

ACKNOWLEDGMENTS

The authors thank Mr. Jianwei Ren for the help with the synthesis of sampangine derivatives (**3**), Mr. Vernon Rayford and Ms. Sharee Smith for the preparation of sampangine (**1**). We are also grateful to Dr. David Lankin (GD Searle, Chicago), and Dr. Marcey L. Waters (University of North Carolina) for useful suggestions and discussions.

REFERENCES

1. Mannina, L.; Luchinet, C.; Patumi, M.; Emanuele, M.C.; Rossi, E.; Segre, A. Concentration dependence of ^{13}C NMR spectra of

triglycerides: implications for the NMR analysis of olive oils. *Magn. Reson. Chem.* **2000**, *38* (10), 886–890.

- 2. Russo, J.M.; Taboada, P.; Attwood, D.; Mosquera, V.; Sarmiento, F. Determination of the aggregation properties of weakly self-associating systems by NMR techniques: the self-association of propranolol hydrochloride in aqueous electrolyte solution. *Phys. Chem. Chem. Phys.* **2000**, *2* (6), 1261–1265.
- 3. Schmidt, K.S.; Sigel, R.K.O.; Filippov, D.V.; van der Marel, G.A.; Lippert, B.; Reedijk, J. Hydrogen bonding between adenine and 2,4-difluorotoluene is definitely not present, as shown by concentration-dependent NMR studies. *New J. Chem.* **2000**, *24* (4), 195–197.
- 4. Taboada, P.; Attwood, D.; Russo, J.M.; Garcia, M.; Sarmiento, F.; Mosquera, V. Self-association of the penicillin sodium nafcillin in aqueous solution. *Langmuir* **2000**, *16* (7), 3175–3181.
- 5. Baraguey, C.; Mertens, D.; Doelle, A. Anisotropic reorientation and intermolecular interactions of sucrose molecules in aqueous solution. A temperature and concentration-dependent ¹³C NMR relaxation study. *J. Phys. Chem., B* **2002**, *106* (24), 6331–6337.
- 6. Martin, R.B. Comparisons of indefinite self-association models. *Chem. Rev.* **1996**, *96* (8), 3043–3064 and reference cited therein.
- 7. Mitra, A.; Seaton, P.J.; Assarpour, R.A.; Williamson, T. Unprecedented concentration dependent chemical shift variation in ¹H-NMR studies: a caveat in the investigations of molecular recognition and structure elucidation. *Tetrahedron* **1998**, *54* (51), 15489–15498.
- 8. Giessner-Prettre, C.; Pullman, B.; Borer, P.N.; Kan, L.-S.; Ts'o, P.O. Ring-current effects in the NMR of nucleic acids: a graphical approach. *Biopolymers* **1976**, *15* (11), 2277–2286.
- 9. Horman, I.; Dreux, B. Estimation of dimerization constants from complexation-induced displacements of proton NMR chemical shifts: dimerization of caffeine. *Helv. Chim. Acta* **1984**, *67* (3), 754–764.
- 10. Dunger, A.; Limbach, H.; Weisz, K. NMR studies on the self-association of uridine and uridine analogs. *Chem. Eur. J.* **1998**, *4* (4), 621–628.
- 11. Acharya, P.; Chattopadhyaya, J. The hydrogen bonding and hydration of 2'-OH in adenosine and adenosine 3'-ethyl phosphate. *J. Org. Chem.* **2002**, *67* (6), 1852–1865.
- 12. Acharya, P.; Velikian, I.; Acharya, S.; Chattopadhyaya, J. Molecular modelling of 2'-OH mediated hydrogen bonding in ribonucleos(t)ides by NMR constrained AM1 and MMX calculations. *Nucleosides Nucleotides Nucleic Acids* **2001**, *20* (4–7), 1211–1217.
- 13. Zouvelekis, D.; Yannakopoulou, K.; Mavridis, I.M.; Antoniadou-Vyza, E. The self-association of the drug acemetacin and its interactions and stabilization with beta-cyclodextrin in aqueous solution as inferred from

NMR spectroscopy and HPLC studies. *Carbohydr. Res.* **2002**, *337* (15), 1387–1395.

- 14. Shull, B.K.; Spielvogel, D.E.; Gopalaswamy, R.; Sankar, S.; Boyle, P.D.; Head, G.; Devito, K. Evidence for spontaneous, reversible paracyclophane formation. Aprotic solution structure of the boron neutron capture therapy drug, L-p-boronophenylalanine. *J. Chem. Soc., Perkin Trans. 2* **2000**, (3), 557–561.
- 15. Corbin, P.S.; Zimmerman, S.C. Complexation-induced unfolding of heterocyclic ureas: a hydrogen-bonded, sheetlike heterodimer. *J. Am. Chem. Soc.* **2000**, *122* (15), 3779–3780.
- 16. Schmuck, C. Self-assembly of 2-(Guanidinocarbonyl)-pyrrole-4-carboxylate in dimethyl sulfoxide: an entropy driven oligomerization. *Tetrahedron* **2001**, *57* (15), 3063–3067.
- 17. Tour, J.M.; Lamba, J.J.S. Synthesis of planar poly(p-phenylene) derivatives for maximization of extended π -conjugation. *J. Am. Chem. Soc.* **1993**, *115* (11), 4935–4936.
- 18. Goldfinger, M.B.; Swager, T.M. Fused polycyclic aromatics via electrophile-induced cyclization reactions: application to the synthesis of graphite ribbons. *J. Am. Chem. Soc.* **1994**, *116* (17), 7895–7896.
- 19. Munakata, M.; Wu, L.P.; Kuroda-Sowa, T.; Maekawa, M.; Suenaga, Y.; Ning, G.L.; Kojima, T. Supramolecular silver(I) complexes with highly strained polycyclic aromatic compounds. *J. Am. Chem. Soc.* **1998**, *120* (34), 8610–8618.
- 20. McCarthy, P.J.; Pitts, T.P.; Gunawardana, G.P.; Kelly-Borges, M.; Pomponi, S.A. Antifungal activity of meridine, a natural product from the marine sponge *Corticium* sp. *J. Nat. Prod.* **1992**, *55* (11), 1664–1668.
- 21. Bontemps, N.; Bonnard, I.; Banaigs, B.; Combaut, G.; Francisco, C. Cystodamine, a new cytotoxic fused polyaromatic alkaloid from the mediterranean ascidian cystodytes *Delle chiaiei*. *Tetrahedron Lett.* **1994**, *35* (38), 7023–7026.
- 22. Cuerva, J.M.; Cárdenas, D.J.; Echavarren, A.M. New synthesis of pyridoacridines based on an intramolecular Aza–Diels–Alder reaction followed by an unprecedented rearrangement. *Chem. Commun.* **1999**, (17), 1721–1722.
- 23. Clark, A.M.; Hufford, C.D.; Peterson, J.R.; Zjawiony, J.K.; Liu, S.; Walker, L. In *Antifungal Copyrine Alkaloids*, In Vitro and In Vivo Antifungal Activities of Sampangines, 31st Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), Chicago, IL, Sept. 29–Oct. 2, 1991; American Society for Microbiology. Washington, DC, 1991; Program and Abstracts, Abstract 213.
- 24. Zjawiony, J.K.; Srivastava, A.R.; Hufford, C.D.; Clark, A.M. Chemistry of sampangines. *Heterocycles* **1994**, *39* (2), 779–800.

25. Zjawiony, J.K.; Khalil, A.A.; Clark, A.M.; Hufford, C.D.; Buolamwini, J.K. Studies on methoxylation in the 7H-naphtho[1,2,3-i,j][2,7]naphthyridin-7-one system. *J. Heterocycl. Chem.* **1997**, *34* (4), 1233–1237.
26. Katsuyama, I.; Zjawiony, J.K. Theoretical and experimental aspects of bromination of sampagine. *Chem. Lett.* **2000** (5), 568–569.
27. Katsuyama, I.; Khalil, A.A.; Ren, J.; Zjawiony, J.K. The identification, mechanism, and improved synthesis of a new and unique heterocyclic system with a fused imidazole ring. *Heterocycles* **2001**, *54* (2), 721–726.
28. Zjawiony, J.K.; Katsuyama, I.; Khalil, A.A.; Dunbar, D.C. In *Unusual Chemical Shift Variation Observed in 15N- and 1H-NMR Studies of Sampagine and Its Derivatives*, 220th National Meeting of the American Chemical Society: Washington, DC, Aug. 20–24, 2000; American Chemical Society. Washington, DC, 2000. ORGN-490.
29. Foldesi, A.; Agback, P.; Glemarec, C.; Chattopadhyaya, J. Synthesis of tetrameric branched RNA-DNA conjugate and branched-RNA analog and their comparative conformational studies by 500 MHz NMR spectroscopy. *Tetrahedron* **1991**, *47* (34), 7135–7156.
30. Jorgensen, W.L.; Severance, D.L. Aromatic–aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene. *J. Am. Chem. Soc.* **1990**, *112* (12), 4768–4774.

Received January 24, 2003

Accepted July 16, 2003

