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ABSTRACT

A concentration dependence of the 1H-NMR chemical shifts of the ar-

omatic protons in sampangine derivatives with a fused imidazole ring is

observed. This variation is probably ascribable to self-association of the

molecules through an intermolecular p-stacking interaction of the aro-

matic rings. The quantitative variation is correlated with the calculated

electrostatic potential for these derivatives. The concentration variation

*Correspondence: J. K. Zjawiony, Department of Pharmacognosy, School of

Pharmacy, University of Mississippi, University, MS 38677, USA; Fax: (662) 915-

6975; E-mail: jordan@olemiss.edu.

477

DOI: 10.1081/SL-120026613 0038-7010 (Print); 1532-2289 (Online)

Copyright D 2003 by Marcel Dekker, Inc. www.dekker.com

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
3
:
0
4
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



appears to be independent of the nature of the substitution in the imid-

azole ring.

Key Words: NMR; 1H; Shift variations; Concentration dependence;

Molecular modeling; Intermolecular interaction; Sampangine

derivatives.

INTRODUCTION

NMR spectroscopy has been demonstrated to be a very useful tool for

probing the details of molecular structure. It is widely used in many re-

search fields, especially organic chemistry, bioorganic chemistry and bio-

chemistry. In particular, the phenomenon of concentration dependence in

NMR spectra is of considerable current interest.[1 – 5] Concentration-depen-

dent chemical shifts have been used to study molecular association.[6,7]

Such studies have been undertaken primarily for nucleobases[8 – 13] and

oligomers.[14 – 16] Fused aromatic and heteroaromatic systems are known to

possess novel properties such as functional materials[17 – 19] and biologically

active compounds.[20 – 22]

Sampangine (1), a natural alkaloid with four fused conjugated rings

including a 2,7-naphthyridine moiety, is reported to be active against Can-

dida albicans and Cryptococcus neoformans[23] and to show interesting

reactivities in nucleophilic and electrophilic substitution.[24 – 26] In the course

of studies on the structural modification of 1, we obtained several new

derivatives of sampangine (3a–c), possessing a fused imidazole, instead of

the anticipated Shiff base (2)[27] (Scheme 1).

We have examined the proton NMR spectra of 3a–c and found a con-

centration dependence of the NMR of the aromatic protons in 3a and 3b.[28]

Scheme 1. Reaction of sampangine with phenethyl, benzyl, and n-butylamine.
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EXPERIMENTAL

All spectra were recorded at ambient temperature in 3mm sample tubes

on a Bruker DRX-400 NMR spectrometer in CDCl3. Deuteriated chloro-

form (99.8% D) was obtained from Cambridge Isotope Laboratories, Inc.

(Andover , MA). Chemical shifts are reported in parts per million (ppm)

relative to internal standard, tetramethylsilane (TMS) at 0.0 ppm.

Computational calculations were performed with the SPARTAN V 5.0

program (Wavefunction Inc., CA) mounted on the Indigo2 Workstation

(Silicon Graphics, Inc. CA). The geometries of 3 were optimized at

the AM1, and electrostatic potential maps were calculated using these

geometries at the HF/6-31G*.

RESULTS AND DISCUSSION

We have found that the proton chemical shifts of 3a–c are dependent

on their concentration in solution. Table 1 shows the 1H-NMR spectra of

3a–c in CDCl3 at various concentrations (mM).

The magnitude of the shift variation for 3a–c decreases in the order H-

4 > H-5 > H-3 > H-2 > H-8, 11 � H-9, 10.

It is worth noting that the best-dispersed spectra are obtained at 60 and

90 mM; this implies that the a suitable concentration exists to obtain the

best spectrum, which is important for smooth assignment of signals. The

magnitude of the variation increased in CD3OD, while it decreased in

DMSO-d6, CD3CN, and benzene-d6 compared with in CDCl3. These effects

suggest that the magnitude of the variation in 1H shifts is not necessarily

dependent on hydrophilicity, polarity, or aromaticity of the solvents. As has

already been described for aromatic systems,[7] the chemical shift variations

observed in this study do not appear to be due to the change in confor-

mational population (with concentration) of the pendant groups in 3a–c.[29]

In order to consider the origin of this phenomenon, we examined the

electronic configuration of 3a–c by use of molecular modeling. The elec-

trostatic potential map for 3a clearly indicates that the aromatic protons are

positively charged and that nitrogen atoms (N-1 and N-7) are negatively

charged (Figure 1).

The most remarkable observation is that the magnitude of the elec-

trostatic potential of these protons is proportional to the observed chem-

ical shift variations. The NMR signals for H-3, -4, and -5, which

exhibited greater positive charge, were observed to have a greater con-

centration variation than those of H-9 and-10, which are less positively
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charged.a These finding were also observed for 3bb and hence led to the

assumption that the protons in one molecule interacted with the nitrogen

atoms in the other one (or more). Nitrogen-15 NMR experiments at various

concentrations, however, indicated an absence of such interactions because

the magnitudes of the variation in 15N shifts are very small in contrast to those

in 1H shifts. These observations suggest the possibility of an aromatic inter-

action between A, B, E and phenyl rings in the R group, whose p-systems are

neutral over a wide range. Interactions between aromatic rings have been

theoretically proposed on the basis of studies of free energy profiles for the

association of the benzene dimer in solution such as liquid benzene, chloro-

form, and water,[30] in all cases the dimer is energetically preferred and

stacked structures become increasingly favorable with increasing arene size.

This seems to provide a rational explanation of our experimental results.

To further explore the possibility that substitution on the imidazole ring

of sampangine was not responsible for the chemical shift variation, the

n-propyl derivative 3c (R = n-Pr)c was prepared and studied. Investigation of

the 1H-NMR spectra was conducted on 3c and sampangine (1) in CDCl3 at

various concentrations. As with 3a and 3b, 3c showed similar proton

chemical shifts that were extremely dependent on the concentration.

aElectrostatic potentials (kcal/mol) for 3a on H-3, -4, and -5 are 31.6, 35.2, and 37.7,

while that on H-9 and -10 are 20.3 and 19.4, respectively.
bElectrostatic potentials (kcal/mol) for 3b on H-3, -4, and -5 are 31.5, 38.0, and 43.3,

while that on H-9 and -10 are 20.2 and 21.0, respectively.
cThe derivative 3c was prepared by using the same method described in Ref. [27].

Figure 1. Electrostatic potential map for 3a. (Go to www.dekker.com to view this

figure in color.)
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The fact that substitution on sampangine with phenyl groups (R = Ph,

R = CH2Ph) or n-propyl (R = n-Pr) gave similar concentration-dependent

chemical shifts indicated that the phenyl group substituted on the imid-

azole ring was not involved in the aromatic interaction. On the other

hand, the shift variation of 1 is much smaller than that of 3. These

results suggest, therefore, that the fused imidazole (E ring) plays a very

important role in the sampangine derivatives in the interactions between

aromatic rings, and that these interactions do not appear to be affected

by substitution.

CONCLUSION

In conclusion, we have found concentration-dependent variation in

chemical shifts of aromatic ring protons in the sampangine derivatives 3a–
c. This concentration-dependent variation of proton chemical shift is prob-

ably ascribable to the self-association of these molecules in solution.

Such phenomenon may be observed in various fused aromatic and het-

eroaromatic compounds.

SUPPORTING INFORMATION AVAILABLE

Graphical presentation of chemical shift vs. concentration for the pro-

tons of 3a in CD3OD, DMSO-d6, CD3CN, benzene-d6, chemical shift vs.

concentration for the protons of 1 in CDCl3, and chemical shift vs. con-

centration for the nitrogen atoms of 3a in CDCl3. This material is available

from the authors on request.
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